Matthew S. E. Peterson mpeterson@brandeis.edu || matthewpeterson.me || (646) 763-1128

EDUCATION _____

Ph.D., Physics , Brandeis University, Waltham, MA <i>Thesis:</i> Geometrically and topologically constrained active matter <i>Advisors:</i> Dr. Aparna Baskaran and Dr. Michael Hagan			Expected December 2020	
B.S., Engineering Physics , Tufts I <i>Magna Cum Laude, Highest Thesis</i> Overall GPA: 3.79, Major GPA: 3.98	s Honors		May 2016	
SKILLS				
	CMake Matlab Mathematica ⊮T _E X	 Version control (Git) GNU/Linux Technical writing Communication 	 Data analysis Data visualization High performance computing 	
PROJECTS				
 Topological Structures in Active Built a tool in Python (using N experimental and simulated a Visualized resulting loops using These tools were used to obtain 	NumPy, SciPy, and SciKit active nematic systems us ng Ovito and Mathematic	sing topological information	n	
 Active Rouse Chains (C++, Pytho Simulated active bead-spring Analyzed resulting data using Findings were published in th 	polymers using molecula Python (NumPy, Matplo	tlib, and Jupyter Notebook		
 MTL (C++) Designing a C++ library main (inspired by NumPy) and lazy 		atical computation, includir	(In Progress) ng multi-dimensional arrays	
ReNES (C++) • Building a NES emulator in C	++ to learn basics of pro-	cessors, memory manage	(In Progress) ment, and graphics	
RESEARCH EXPERIENCE				
Graduate Researcher Martin A. Fisher School of Physics, • Develops simulations to mode • Analyzes experimental and si • Designs and implements inno • Collaborates across discipline	el experimental systems imulation data to identify ovative methods to classi	of confined active particles novel behaviors in 3D acti fy 3D structures in active fl	ve systems luids	
Undergraduate Research Assista Department of Physics and Astrono		Part Time	e, January 2013 – May 2016	

- Examined the impact of carbon nanotubes on the electro-optic properties of liquid crystals
- Devised experiments, collected data, and analyzed results, culminating in an honors thesis and a first-author publication in a peer-reviewed journal
- Managed laboratory equipment, including writing documentation and training new students

OTHER EXPERIENCE _

Teaching Assistant

Martin A. Fisher School of Physics, Brandeis University

- Led weekly lab sections for the introductory physics course for non-physics majors
- Achieved outstanding ratings on course evaluations for clear and effective communication, strong engagement with students, and thorough feedback on graded assignments

Resident Head Tutor

Academic Resource Center, Tufts University

- · Tutored undergraduate students in physics, mathematics, and computer science
- Contributed significantly to the Bridges to Engineering Success at Tufts (BEST) program by mentoring students from disadvantaged backgrounds during their transition to college

Engineering Outreach Intern

Office of Undergraduate Admissions, Tufts University

- Wrote articles spotlighting professors' research for Tufts University's JUMBO Magazine
- · Coordinated open house events for prospective and accepted students

AWARDS & FELLOWSHIPS					
NSF IGERT Fellowship Benjamin G. Brown Scholarship For promise in scientific research	2016 – 2017 2016	Nadia Medina Memorial Prize For extraordinary contributions to collaborative I Tufts University Summer Scholar	2016 earning 2015		
Bridge to Engineering Success at Tufts2016Appreciation AwardFor continual commitment to provide a diverse and		Tau Beta Pi, the engineering honors society Sigma Pi Sigma, the physics honors society	2015 2015		
inclusive learning environment		Tufts Undergraduate Research Fund Tufts National Merit Scholarship	2014 2012		

PUBLICATIONS ____

G. Duclos, R. Adkins, D. Banerjee, M. S. E. Peterson, M. Varghese, I. Kolvin, A. Baskaran, R. A. Pelcovits, T. R. Powers, A. Baskaran, F. Toschi, M. F. Hagan, S. J. Streichan, V. Vitelli, D. A. Beller, Z. Dogic. "Topological structure and dynamics of three dimensional active nematics." Science 367 (6482), 1120-1124 (2020).

M. S. E. Peterson, M. F. Hagan, A. Baskaran. "Statistical properties of a tangentially driven active filament." Journal of Statistical Mechanics: Theory and Experiment 2020 (1), 013216 (2020).

M. S. E. Peterson, G. Georgiev, T. J. Atherton, P. Cebe. "Dielectric analysis of the interaction of nematic liquid crystals with carbon nanotubes." Liquid Crystals, 45 (3), 450-458 (2018).

SELECTED PRESENTATIONS

MRSEC Winter School, Carroll, NH M. Peterson, M. Hagan, A. Baskaran, "Active matter in vesicles"

India Institute of Science, Bengaluru, Karnataka, India Julv 2018 M. Peterson, M. Hagan, A. Baskaran, "Structure and dynamics of active polar polymers and confined active nematics"

American Physical Society, Los Angeles, CA

M. Peterson, A. Joshi, M. Hagan, A. Baskaran. "Structure and dynamics of active nematics under circular confinement - a microscopic simulation study."

American Physical Society, Baltimore, MD March 2016 M. S. E. Peterson, G. Georgiev, T. J. Atherton, P. Cebe. "Dielectic studies of nematic liquid crystals doped with carbon nanotubes."

Part Time, August 2017 - May 2018

Part Time, January 2013 – May 2016

Part Time, August 2014 - May 2015

March 2018

February 2020